«Орденов Трудового Красного Знамени и Дружбы народов Первоуральский динасовый завод имени Ефима Моисеевича Гришпуна»

Современные огнеупоры производства АО «ДИНУР» для стекловаренных печей. Особенности эксплуатации динасовых огнеупоров

АО «ДИНУР» является в России

Единственным производителем

- Динасовых огнеупоров, в т.ч. для коксовых батарей, воздухонагревателей доменных печей.
- Изделий из кварцевой керамики для МНЛЗ
- Корундографитовых изделий для МНЛЗ
- Изделий из диоксида циркония для МНЛЗ (CNC, MNC, FNC)

Одним из ведущих производителей и поставщиков

- Современных леточных масс для доменных печей
- Желобных масс для доменных печей
- Углеродсодержащих изделий для футеровки стальковшей
- Изделий для футеровки передвижных миксеров состава Al₂O₃-SiC-C
- Бетонных огнеупорных изделий различного назначения
- Корундовых порошков для абразивной промышленности
- Кварцитовых порошков и масс для футеровки индукционных печей

Обеспечение сырьевой устойчивости.

На АО «ДИНУР» освоено производство следующих сырьевых материалов, которые используются в собственной технологии выпускаемых огнеупоров:

- Плавленый кварц (кварцевое стекло)
- Плавленый корунд, в т.ч. с дополнительным легированием магнием, титаном и т.п.
- Плавленая алюмомагниевая шпинель
- Плавленый корундомуллит
- Плавленый диоксид циркония, стабилизированный оксидом кальция и оксидом иттрия
- Высокоглиноземистое вяжущее CEMDIN (на основе собственного плавленого алюминаткальциевого клинкера)
- Реактивный глинозем

ДИНАС МАРОК ДСО И ДСУ

Наименование показателей	дсо	дсу
Содержание SiO ₂ , не менее	95	96
Fe₂O₃, не более	0,5	0,5
СаО, не более	2,3	2,3
Температура начала размягчения, °С ,не ниже	1650	1650
Пористость открытая, не более, %	21	21
Предел прочности при сжатии, не менее, H/мм ²	40	40
Остаточный кварц, не более, %	6	0,8
Огнеупорность, не ниже, °C	1710	1710

Изделия из кварцевого стекла марки КСБМ

Наименование показателей	ТУ 1539-003- 00188162-96	Факт
Содержание SiO ₂ , не менее	98	99
Fe₂O₃, не более	0,2	0,1
Температура начала размягчения, °С ,не ниже	1650	1650
Пористость открытая, не более, %	20	12-14
Предел прочности при сжатии, не менее, H/мм ²	Не норм.	25-30
Теплопроводность при t=800 °C (Вт/м·К)	Не норм.	1,0
Коэффициент термического линейного расширения в интервале температур 20-1000 °C	Не норм.	0,56·10-6

Теплоизоляционные динасовые изделия марки ДЛ-1,2

Наименование показателей	ГОСТ Р 52803-2007
Содержание SiO ₂ , % не менее	91
Плотность, не более, г\см3	2,39
Предел прочности при сжатии, не менее, H/мм ²	4,5
Теплопроводность, Вт/(м·К), При средней температуре 350 °C, не более	0,6
Дополнительный линейный рост при t=1550 °C (%), не более	1,0

Муллитокремнеземистые, муллитовые бетонные смеси марок МКРВ-12, МЛВ, МЛБС-70, и бетонные изделя марок МКРВ-12 ФП, МЛВБ

Наименование показателей	МЛВБ	МЛВ	МЛБС- 70	МКРВ- 12ФП	MKPB- 12
Содержание Al ₂ O ₃ , не менее	65	65	70	57	57
SiO ₂ , не более	30	30	26	39	40
СаО, не более	2	1,8	2	2	1,8
Температура начала размягчения, °С ,не ниже	1630	-/	-/	1640	-
Пористость открытая, не более, % после термообработке при 1000°C		19	19		18
Предел прочности при сжатии после термообработки при1000°C, не менее, H/мм ²	70	70	45	70	70
Дополнительный линейный рост при 1550°C, не более, %	0,4	/-	-	-	_

Изделия марок МКРП-53, МЛП, МЛС-62, МЛП-65, МКВ-72.

			B.		
Наименование показателей	МКРП-53	млп	МЛС- 62	МЛП-65	MKB-72
Содержание Al ₂ O ₃ , не менее	53	64	62	65	72
SiO ₂ , не более		23			14
Fe₂O₃, не более		1			1,2
Температура начала размягчения, °С ,не ниже	1600	1650	1640	1630	1640
Пористость открытая, не более, %	18	15	18	18	18
Предел прочности при сжатии, не менее, H/мм ²		80	70	65	70

Высокоглиноземистые теплоизоляционные бетонные смеси и изделий на их основе плотностью 1,3; 1,8 г/см³

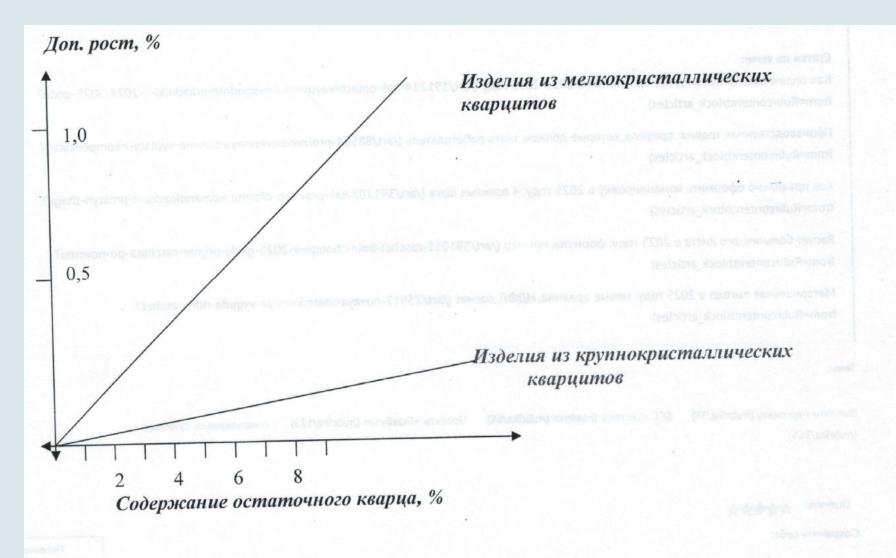
Наименование показателей	ВГТБС- 1,3	ВГТБИ-1,3	ВГТБС-1,8	ВГТБИ- 1,8
Содержание Al ₂ O ₃ , не менее	/	58	65	*
SiO _{2,} не более		34	24	
СаО, не более		2,8	3,1	Ĺ
Теплопроводность при температуре 600		0,7		0,9
Пористость открытая, не более,% после термообработки до 120°C, После термообработке при 1000°C	20 30		15 25	1
Предел прочности при сжатии, не менее, Н/мм ²	20		25	
после термообработки до 120°C, После термообработке при 1000°C	20 25	15	25 35	30
Температура применения, °С, не более	1	450	150	0

Бетон и изделия Din AZS-60S

Наименование показателей	Din AZS-60S
Содержание Al ₂ O ₃ , не менее	60
ZrO _{2,} в пределах	18-20
Fe ₂ O ₃ , не более	0,5
Термостойкость, количество теплосмен, не менее	50
Пористость открытая, не более,% После термообработке при 1100°C	18
Дополнительный линейный рост при 1550 °C, не более, %	0,2
Температура начала размягчения, °С ,не ниже	1650

- Это главным образом динасовые и кварцевые (из плавленого кварца) огнеупоры. Их основу составляет кремнезем, содержание которого в зависимости от назначения и сорта изделия колеблется в пределах 93 99 %.
- Кремнезем существует в виде трех основных модификаций: кварц, тридимит, кристобалит. Всего же насчитывается более 15 модификаций, большинство из которых метастабильны. Названные устойчивые модификации тоже имеют метастабильные фазы в виде и кварца, и тридимита, и кристобалита.
- При переходе из одной модификации в другую происходит значительное изменение объема, что необходимо учитывать при разработке технологии производства и условий эксплуатации огнеупора.

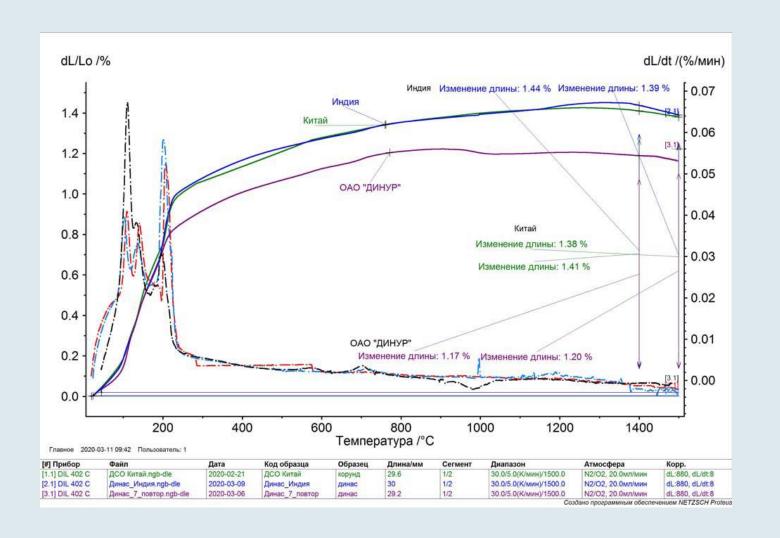
Диаграмма Феннера


• Схематически переход можно представить так:

- По горизонтали отложены стабильные модификации, по вертикали – нестабильные и температуры превращения одной модификации в другую, указаны также изменения объема при превращениях.
- Горизонтальные превращения протекают медленно и практически необратимо, превращения в пределах одной модификации (вертикальные) протекают сравнительно легко и являются обратимыми. Как видно, примерно до 600°С протекают все превращения в метастабильных фазах.

- Для производства динаса могут быть использованы кварциты как крупнокристаллические, так и мелко- кристаллические (скрытористаллические с цементом нарастания). Изделия из таких кварцитов будут сильно различаться температурным расширением при одинаковой величине остаточного кварца.
- Поэтому дискуссии о допустимой величине остаточного кварца в динасе, которые часто возникают при проектировании коксовой батареи, или при выборе поставщика динаса для строительства батареи, должны безусловно проводиться с учетом именно типа сырья.

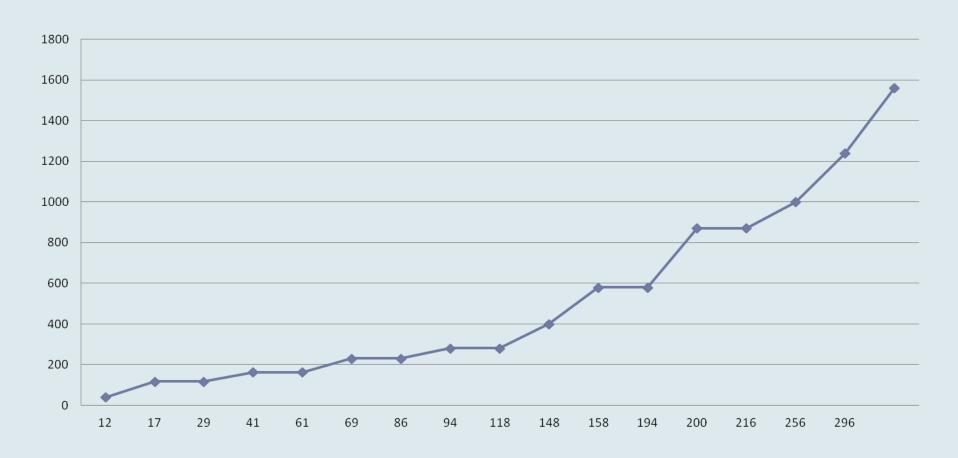
Динасовые огнеупоры


• При службе в нестационарных температурных условиях преобладающим видом износа футеровок является зарождение и развитие макро- и микротрещин, вызывающих, в конечном итоге, термическое скалывание огнеупора. Согласно существующей статистике, примерно 1\3 часть всех футеровок подвергается износу термическим скалыванием.

•

- Интенсивность этого износа определяется многими факторами, но наибольшее влияние на нее (при идентичных параметрах термонагружения) оказывает величина температурного коэффициента линейного расширения (ТКЛР).
- Сегодня изменение длины динаса марки ДС при температурах до 1400 °С не превышает 1,35% (типично 1,2%- 1,3%), марки ДСУ не более 0,8%.

Изготовитель, страна	Фазовый состав,%%		
	Тридимит	Кристобалит	Остаточный кварц
<u>Россия,</u> ОАО «ДИНУР», кристаллический кварцит	53,2	33,3	3,49
<u>Китай,</u> кристаллический кварцит	23,6	58,9	7,56
Индия, цементный кварцит	48,9	47,0	0,47


Термическое расширение динаса

Термическое расширение динаса

• Судя по характеру дилатометрических кривых, можно сделать вывод о том, что динас производства ОАО «ДИНУР» по термическим характеристикам, составу, микроструктуре не уступает лучшим зарубежным аналогам, а по некоторым маркам даже превосходит последние.

Рекомендованный график разогрева печи

- •117-163° V тридимит, удаление влаги.
- •180-273° кристобалит (усиление внутренних напряжений, образование микротрещин).
- •573° расширение кварца с увеличением объема до 0,6%.
- •870° @ кварц (полиморфные превращения).

Рекомендованный график разогрева печи

- 1. 40-117-5°/час-12 часов.
- 2. 40-117-5°/час-12 часов.2. 117-0°/час-5 10. 400-580- 5°/час-30 часов

часов (выдержка)

- 3.117-163-4°/yac-12 yacob.
- 4. 163-0°/час-12 часов (выдержка)
- 5. 163-230 4°/час- 20 часов.
- 6. 230-0°/час-8 часов (выдержка)
- 7. 230-280- 4° /час-17 часов.
- 8. 280-0°/час-8 часов (выдержка)

- 9. 280-400- 5°/час -24 часа.
- 11. 580- 0°/час-10 часов (выдержка)
- 12. 580-870- 8°/час-36 часов.
- 13. 870- 0°/ час- 6 часов (выдержка)
- 14. 870-1000- 8°/час- 16 часов.
- 15. 1000-1240- 5°/час-40 часов.
- 16. 1240-1560- 8°/час- 10 часов.

Всего 296 часов

СПАСИБО ЗА ВНИМАНИЕ

www.dinur.ru

